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An efficient route to two 3-0-acyl-2-deoxy-4,6-O-isopropylidene-2-trichloroacetamido-p-glucopyranosyl
trichloroacetimidate donors is reported. As demonstrated for the 3-O-acetyl derivative, these building
blocks are exquisite B-p-glucosamine donors when reacted either with simple alcohols or with complex
oligosaccharides. Besides, their protection pattern is compatible with selective deprotection and subse-
quent chain elongation at O-3 of the newly incorporated glucosamine residue.

© 2008 Elsevier Ltd. All rights reserved.

Carbohydrates are involved in a wide range of biological
processes, including intercellular recognition events' and host-
pathogen interactions.? Access to relevant oligosaccharides and
glycoconjugates in pure form and sufficient amounts may open
the way to efficient glycotherapeutics, along with an improved
understanding of carbohydrate-mediated interactions. Along this
line, this study reports on the preparation and use of yet undis-
closed precursors to the N-substituted —3)-2-amino-2-deoxy-p-
p-glucopyranosyl-(1-moiety. On one hand, N-acyl-B-p-glucosa-
mine derivatives substituted at O-3 are major components of cell
wall peptidoglycan® and bacterial lipid A.# On the other hand,
N-acetyl-p-p-glucosamine is an important glycan constituent,” fre-
quently encountered in its 3-O-glycosylated form. As such, it was
identified in structures of highly diverse origins, including hyaluro-
nan,® glycolipids, and glycoproteins from human,’ insects,® para-
sites,® or bacteria including Shigella.'® N-Acetyl-p-p-glucosamine
residues are involved in 1,2-trans glycosidic linkages whose con-
struction from readily available N-acetyl-p-glucosamine is, despite
recent progress in the field,'*!? often impaired by the harsh condi-
tions required due to the weak glycosyl donor properties of the
intermediate oxazoline. When complex acceptors are involved,
such glycosidations are best performed by use of donors bearing
temporary N-protecting groups which are able to direct the stereo-
chemical outcome of the condensation.'*> N-Protection removal
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followed by in situ acetylation then provides the most common
access to the N-acetylated targets. Following the early disclosure
of the N-phthaloyl group,'® a number of additional cyclic N,N-dia-
cyl protecting groups were investigated.!>~!5 Alternatively, the con-
venient use of strongly electron-withdrawing N-protecting groups,
such as the trifluoroacetyl,'® trichloroacetyl,!” or trichloroethoxy-
carbonyl'® was reported. In the course of our investigation on Shi-
gella flexneri oligosaccharides, various glucosamine donors
differing in their N-protecting group pattern were evaluated.!®
Over the years, the N-trichloroacetyl derivative 1 (Fig. 1) was
adopted for its efficiency as a glycosyl donor,?° combined to the
various conditions allowing N-trichloroacetyl conversion into acet-
amide. Those include basic trichloroacetyl removal and subsequent
N-acetylation of the resulting amine,?!2 or direct transformation
under neutral conditions such as stannan-mediated radical hyd-
rodechlorination'”?* or palladium-mediated reductive hydrode-
chlorination.?° Alternative methodologies involve conversion into
readily deprotectable carbamates,* or microwave-assisted zinc
reduction.®

Within our program on the synthesis of S. flexneri oligosaccha-
rides, readily accessible orthogonally protected precursors to the
—3)-2-acetamido-2-deoxy-B-p-glucopyranosyl-(1—moiety, acting
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Figure 1. Structure of trichloroacetimidate donors 1 and 2.
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as donors and potential acceptors, were needed. Relying on our
previous work on S. flexneri serotypes 2a and 5a O-antigen frag-
ments, our investigation was restricted to building blocks bearing
a 4,6-0-isopropylidene group.

Indeed, we showed early on that although used successfully in
the synthesis of linear oligosaccharide fragments of S. flexneri sero-
type Y O-antigen, the more common 4,6-O-benzylidene glucosa-
mine derivatives did not match the synthetic requirements
associated to the serotype-specific branching pattern of S. flexneri
2a oligosaccharides.? Despite its higher sensitivity to acid hydro-
lysis, the 4,6-O-isopropylidene acetal was found as a suitable alter-
native and was adopted since then, including in the synthesis of a
pentadecasaccharide.?

To our knowledge, 4,6-O-isopropylidene glucosamine acceptors,
and occasionally donors,?” have found applications in the synthesis
of lipid A%® and peptidoglycan?® analogues or biosynthesis inhibi-
tors.3% Interestingly, they have scarcely been used as synthetic
intermediates to complex oligosaccharides.?>3! Overall, only two
2-azido-2-deoxy-4,6-O-isopropylidene glucopyranosyl trichloro-
acetimidate donors®”*? and more recently a 2-N-trichloroethoxy-
carbonyl analogue®® have been disclosed. The synthesis of
derivative 2, whose 3-O-acetyl moiety is selectively cleavable in
the presence of a number of protecting groups, was therefore
investigated. In the course of the study, an alternative to the stan-
dard N-trichloroacetylation procedure!” was developed. Indeed,
use of NaOMe/(Cl5C0),03* ensured efficient conversion of 3 into
trichloroacetamide 4, as confirmed from the isolation of fully pro-
tected 5 (88%) as a 65/35 ao/p mixture, following peracetylation of
the crude material (Scheme 1).

Alternatively, crude 4 was advantageously reacted with 2-
methoxypropene>> and excess CSA to give hemiacetal 6 issued
from the regioselective acetalation at O-4 and O-6 (Scheme 2).
Conventional peracetylation of the crude material gave the fully
protected intermediate 7 (70%, 3 steps). Interestingly, under these
conditions, formation of the furanose derivative 8, identified from
the characteristic coupling constant of H-1 (6.26 ppm,
J12=4.9 Hz),*% could not be totally avoided. Nevertheless, it was
reduced to an acceptable 10% isolated yield over 3 steps, which
compared favorably with the 30% yield obtained when using 1,2-
dimethoxypropane. Turning 7 into trichloroacetimidate 2 first re-
quired selective anomeric de-O-acetylation. Use of hydrazine ace-
tate in DMF'” gave hemiacetal 9 in 78% only. Noteworthy, the
isolated yield of 9 was brought up to 87% upon treatment of diac-
etate 7 with ethylenediamine/AcOH in THF.>’ Trichloroacetoni-
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Scheme 1. Alternative synthesis of known intermediate 5.
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Scheme 2. Efficient synthesis of new trichloroacetimidate 2.

trile-mediated conversion of 9 into the target donor 2 (87%) was
best performed by use of DBU as catalyst.>® In the presence of
weaker bases such as Cs,CO;5 or K,CO5,3® the reaction did not g0
to completion resulting in lower yields. Besides, formation of oxaz-
oline 10 (6.1 =7.18 ppm) was observed when Cs,CO3 served as
base. However, due to the instability of hemiacetal 9 during col-
umn chromatography, a side-product, whose structure was tenta-
tively assigned based on NMR data, to the unstable ketoaldehyde
11 derived from base-mediated H-2/3-acetate elimination and
subsequent imine/enamine hydrolysis, was isolated. To our satis-
faction, this side reaction was easily overcome upon direct conver-
sion of crude hemiacetal 9 into trichloroacetimidate 2° (80% from
7). Taking advantage of this optimization process, large amounts of
donor 2 can now be conveniently prepared in good overall yield
from commercially available 3 (56% over 5 steps involving two
purifications). Peracetylated donor 1 was easily prepared accord-
ingly (76%, 4 steps).

Assessing the donor properties of trichloroacetimidate 2 was
next. In a preliminary investigation, allyl alcohol was used as a
model acceptor. Conventional TMSOTf-mediated condensation of
2 with allyl alcohol (2 equiv) afforded as expected the novel B-allyl
derivative 12. The corresponding tri-O-acetyl donor 1'7 provided
13 in a similar 83% yield (Scheme 3). To confirm that donor 2
was indeed suitable for efficient elongation at O-3 of the newly
incorporated glucosamine residue, 12 served as a model to attempt
deacetylation. Thus, saponification, allowing concomitant O-3/N-2
deprotection, followed by in situ selective N-acetylation, provided
acceptor 14 (71%) otherwise obtained by isopropylidenation of
the triol precursor.?° Needless to say that the acetyl moiety could
be replaced by a number of acyl groups if required.?® Alternatively,
aware of the well-known propensity of the acetamido group of glu-
cosamine to interfere with glycosylation outcome,*® we investi-
gated the selective 3-O-deacetylation of 12. Owing to possible
trichloroacetyl loss during cleavage of an isolated ester,?° reagents
ensuring chemoselectivity were investigated. Optimized condi-
tions involved K,COs, readily eliminated upon filtration, to provide
the trichloroacetamide acceptor 15 (94%). Interestingly in our
hands, the overall yield of 15 from 3 according to this route (43%,
7 steps), was comparable to that involving donor 1 (49%, 7 steps).

Having demonstrated that the 4,6-O-isopropylidene acetal had
no negative influence on the condensation outcome when using
simple primary alcohols, and that it was fully compatible with both
selective O-deacetylation or concomitant O,N-deacylation, we next
turned to more complex acceptors (Scheme 4). Pentasaccharide 17,
compatible with chain elongation at O-3 of the glucosamine resi-
due, was of interest in our ongoing study on S. flexneri 2a. The tet-
rasaccharide acceptor 16,2° reacted smoothly with donor 2 in the
presence of catalytic TMSOTT to give pentasaccharide 17! (96%).
There again, the efficiency of 2 as donor matched that of the sim-
pler analogue 1 providing 18 (98%) as reported previously.2°

The use of donor 2 for the synthesis of S. flexneri 3a building
blocks was thought more challenging, since the glucosamine resi-
due is in that case part of a 2,3-cis-di-O-glycosylated branching
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Scheme 3. Readily access to acceptors 14 and 15 from donor 2.
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Scheme 4. Donor 2: an efficient precursor to pentasaccharide 17.
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Scheme 5. Donor 2 as precursor to branched trisaccharide 20.

pattern (Scheme 5). Nevertheless, coupling of donor 2 (1.4 equiv)
with the known disaccharide acceptor!® 19 gave the branched tri-
saccharide 202 (90%). The measured 'Jcy constant at the glucosa-
mine anomeric carbon (Ycy=164Hz) ascertained the B-
stereoselectivity of the condensation.?*> For comparison, TMSOTf-
mediated glycosylation of acceptor 19 and donor 1 (1.2 equiv) gave
tri-O-acetyl 21 (92%). Possibly due to steric hindrance at the accep-
tor site, oxazoline 10 was identified as a side-product when using
0.2 equiv of TMSOT( to catalyze glycosylation of 19 and 2. Fortu-
nately, changing to 0.3 equiv allowed reopening of 10.

Although the latter example tends to suggest that, in compari-
son to triacetate 1, slightly higher amounts of both TMSOTf and do-
nor 2 may be needed for successful introduction of an orthogonally
protected glucosamine residue at sterically hindered positions, we
are confident that the newly disclosed 2 has a broad potential as
donor. However, we reasoned that the 3-O-acetyl moiety might
be a limitation. In anticipation to possible orthogonality require-
ments with O-acetyl groups present on the target molecules, as,
for example in S. flexneri 3a O-antigen,'® the 3-0-levulinoyl ana-
logue 23 was synthesized (Scheme 6). The B-allyl glycoside 22,
readily obtained from 15 (98%), served as the key intermediate.
Conversion of 22 into 23 involved hemiacetal 24 issued from ano-
meric deallylation. The sensitivity of the isopropylidene group to
acidic hydrolysis, added to the high propensity of hemiacetal 24
to form 11 following base-catalyzed elimination of the 3-O-acyl
protection, implied careful deprotection monitoring. Thus, follow-
ing conventional iridium(I)-catalyzed allyl isomerization,** the
propenyl was cleaved in the presence of aqueous iodine and NaH-
CO5 to avoid isopropylidene loss.*> Direct activation of the crude
material gave the target trichloroacetimidate donor 236 (84%, 2
steps). Noteworthy, the strategy is applicable to other 3-O-protect-
ing groups, including chloroacetyl. Indeed, we would like to
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Scheme 6. Efficient synthesis of donor 23 from 15.

emphasize that the acid-sensitivity of the 4,6-O-isopropylidene
acetal prevented any transfer of the efficient methodology used
to prepare 4,6-0-benzylidene-3-O-chloroacetyl-2-deoxy-2-trichlo-
roacetamido-o-p-glucopyranosyl trichloroacetimidate.*’

In summary, two new 2-deoxy-2-trichloroacetamido-p-gluco-
pyranosyl trichloroacetimidate donors bearing a 4,6-O-isopropyli-
dene protecting pattern are disclosed. Most interestingly, the
synthesis of 3-O-acetylated 2 (56% on a 10g scale) proceeded
through an easily scalable five-step process. The high B-p-glucosa-
mine donor potency and compatibility of 2 with possibly sterically
hindered acceptors were demonstrated for simple primary alco-
hols as well as for a di- and a tetrasaccharide. Analogue 23, pro-
tected at O-3 with a levulinoyl group, is proposed as a suitable
alternative to 2 to answer the need for acetyl orthogonality as fre-
quently encountered when dealing with bacterial polysaccharides.
Trichloroacetimidate 23 is readily accessible from 2 (63%) via allyl
glycoside 15.
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